\(\int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [253]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 187 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (13 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-(A-B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2/5*A
*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)-2/15*(A-5*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+
c))^(1/2)+2/15*(13*A-5*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {4107, 4098, 3893, 212} \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 (13 A-5 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d \sqrt {a \sec (c+d x)+a}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqr
t[a]*d)) + (2*A*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) - (2*(A - 5*B)*Sin[c + d*x])/(
15*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*(13*A - 5*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqr
t[a + a*Sec[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4098

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 \int \frac {-\frac {1}{2} a (A-5 B)+2 a A \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{5 a} \\ & = \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} a^2 (13 A-5 B)-\frac {1}{2} a^2 (A-5 B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (13 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+(-A+B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (13 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {(2 (A-B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 (13 A-5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.80 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.71 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {(29 A-10 B-2 (A-5 B) \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {\sec (c+d x)} \sin (c+d x)+\frac {15 \sqrt {2} (A-B) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)}{\sqrt {1-\sec (c+d x)}}}{15 d \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

((29*A - 10*B - 2*(A - 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x] + (15*Sqrt[2]
*(A - B)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x])/Sqrt[1 - Sec[c + d*x]])/(15
*d*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(348\) vs. \(2(158)=316\).

Time = 3.95 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.87

method result size
default \(-\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (15 A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )-15 B \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )+15 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \sec \left (d x +c \right )^{2}-6 A \sin \left (d x +c \right )-15 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \sec \left (d x +c \right )^{2}+2 A \tan \left (d x +c \right )-10 B \tan \left (d x +c \right )-26 A \tan \left (d x +c \right ) \sec \left (d x +c \right )+10 B \tan \left (d x +c \right ) \sec \left (d x +c \right )\right )}{15 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(349\)
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (15 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )+15 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )^{2}-6 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )-26 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+3 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )+2 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(368\)

[In]

int((A+B*sec(d*x+c))/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/15/d/a*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(5/2)*(15*A*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)
/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*sec(d*x+c)-15*B*2^(1/2)*arctan(1/2*sin(d*
x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*sec(d*x+c)+15*A*arctan(1/2*si
n(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*2^(1/2)*sec(d*x+c)^2-6*A*
sin(d*x+c)-15*B*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1
/2)*2^(1/2)*sec(d*x+c)^2+2*A*tan(d*x+c)-10*B*tan(d*x+c)-26*A*tan(d*x+c)*sec(d*x+c)+10*B*tan(d*x+c)*sec(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.07 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\frac {15 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} - \frac {4 \, {\left (3 \, A \cos \left (d x + c\right )^{3} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (13 \, A - 5 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {15 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{3} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (13 \, A - 5 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/30*(15*sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x +
 c) + 1))/sqrt(a) - 4*(3*A*cos(d*x + c)^3 - (A - 5*B)*cos(d*x + c)^2 + (13*A - 5*B)*cos(d*x + c))*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d), 1/15*(15*sqrt(2)*((A -
B)*a*cos(d*x + c) + (A - B)*a)*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sq
rt(cos(d*x + c))/sin(d*x + c)) + 2*(3*A*cos(d*x + c)^3 - (A - 5*B)*cos(d*x + c)^2 + (13*A - 5*B)*cos(d*x + c))
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)]

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)**(5/2)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 640 vs. \(2 (158) = 316\).

Time = 0.61 (sec) , antiderivative size = 640, normalized size of antiderivative = 3.42 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/60*(sqrt(2)*(60*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 5*cos(2/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 60*cos(5/2*d*x + 5/2*c)*sin(4/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/
2*c), cos(5/2*d*x + 5/2*c))) - 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5
*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x
+ 5/2*c))) + 1) + 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arctan2(sin(
5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 - 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) +
1) + 6*sin(5/2*d*x + 5/2*c) - 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 60*sin(1/5*arct
an2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A/sqrt(a) - 10*(3*sqrt(2)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*
c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x +
 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2
 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*
d*x + 3/2*c))) + 1) - 2*sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))))*B/sqrt(a))/d

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(sqrt(a*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)), x)